Calculates the cumulative geometric probability for a single value

geometcdf(*probability*, *trials*)

Press:

- 2ND DISTR to access the distribution menu
- ALPHA E to select geometcdf(, or use arrows.

Press ALPHA F instead of ALPHA E on a TI-84+/SE with OS 2.30 or higher.

TI-83/84/+/SE/CSE/CE

2 bytes

This command is used to calculate cumulative geometric probability. In plainer language, it solves a specific type of often-encountered probability problem, that occurs under the following conditions:

- A specific event has only two outcomes, which we will call "success" and "failure"
- The event is going to keep happening until a success occurs
- Success or failure is determined randomly with the same probability of success each time the event occurs
- We're interested in the probability that it takes
**at most**a specific amount of trials to get a success.

For example, consider a basketball player that always makes a shot with 1/4 probability. He will keep throwing the ball until he makes a shot. What is the probability that it takes him no more than 4 shots?

- The event here is throwing the ball. A "success", obviously, is making the shot, and a "failure" is missing.
- The event is going to happen until he makes the shot: a success.
- The probability of a success - making a shot - is 1/4
- We're interested in the probability that it takes at most 4 trials to get a success

The syntax here is `geometcdf( probability, trials)`. In this case:

`:geometcdf(1/4,4`

This will give about .684 when you run it, so there's a .684 probability that he'll make a shot within 4 throws.

Note the relationship between `geometpdf(` and `geometcdf(`. Since `geometpdf(` is the probability it will take **exactly** N trials, we can write that `geometcdf(1/4,4) = geometpdf(1/4,1) + geometpdf(1/4,2) + geometpdf(1/4,3) + geometpdf(1/4,4)`.

# Formulas

Going off of the relationship between `geometpdf(` and `geometcdf(`, we can write a formula for `geometcdf(` in terms of `geometpdf(`:

(If you're unfamiliar with sigma notation, $\sum_{i=1}^{n}$ just means "add up the following for all values of i from 1 to n")

However, we can take a shortcut to arrive at a much simpler expression for `geometcdf(`. Consider the opposite probability to the one we're interested in, the probability that it will **not** take "at most N trials", that is, the probability that it will take more than N trials. This means that the first N trials are failures. So `geometcdf(p,N)` = (1 - "probability that the first N trials are failures"), or:

# Related Commands

.