The root() Command

Command Summary

Takes the nth root of a value.

Command Syntax

root(value,n)

• Press 2nd MATH to enter the MATH popup menu.
• Press 1 to enter the Number submenu.
• Press D to select root(.

This command requires a TI-89 Titanium or Voyage 200 calculator with AMS version 3.10 or higher.

2 bytes

The root() command takes nth roots: root(x,2) is the square root of x, root(x,3) is the cubic root, etc. (n doesn't have to be a whole number, or even real). Since root(x,n) is equivalent to x^(1/n), there was never any real need for this command, but it was added in the last AMS update for the Voyage 200 and TI-89 Titanium because users complained about not being able to do this calculation.

As far as complex roots are concerned: if taking a root of a real number, root() will return the real branch if there is one. If taking the root of a complex number, it will always return the principal branch.

``````:root(x,2)
√(x)
:root(1024,10)
2```
```

The command uses the same routines as the ^ operator, so it works in all the same ways. This means it can be applied to lists (element-wise), and to matrices either through repeated multiplication (e.g. if taking the 1/100th root of a matrix, which ends up being its 100th power) or by diagonalizing the matrix first (see Matrices and Their Commands for mor information about this method). If you want to take the nth root of every element of a matrix, use the .^ command.

# Optimization

You can save a few bytes of space by using root(x,n) instead of x^(1/n); however, this optimization is a bit dodgy. It requires AMS 3.10 to use, so if you're planning on releasing the program anywhere, it will only work on the TI-89 Titanium and the Voyage 200, and even then it might require updating the OS. It's probably not worth it, unless the program is for personal use only.

# Error Conditions

230 - Dimension happens when non-square matrices are used with root().

230 - Domain error happens when a matrix is raised to an integer power not in the range -32768..32767.

665 - Matrix not diagonalizable happens when diagonalization (used to compute most uses of root() with matrices) fails.

800 - Non-real result happens when there is no real result to return, and the calculator is in real number mode.

890 - Singular matrix happens when raising a matrix with no inverse to a negative power.